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Instructor: Ziyuan Zhong, Nakul Verma Scribes: Vincent Liu

Today, we introduce the non-linear dimensionality reduction method t-distributed Stochastic

Neighbor Embedding (tSNE), a method widely used in high-dimensional data visualization and

exploratory analysis. We will go over how the method was developed over years, its limitations,

and briefly the recent theoretical guarantees on the algorithm.

1 Introduction to tSNE

1.1 Timeline

Year Method Author Summary

1901 PCA Karl Pearson First dimensionality reduc-

tion technique

2000 Isomap Tenenbaum, de Silva, and

Langford

First non-linear dimensional-

ity reduction technique

2002 SNE Hinton and Roweis Original SNE algorithm

2008 tSNE Maaten and Hinton Addressed the crowding issue

of SNE, O(N2)

2014 BHt-SNE Maaten Using BarnesHut approxima-

tion to achieve O(N log(N))

2017 Linderman and Steinerberger First step towards theoretical

guarantee for t-SNE

2017 Fit-SNE Linderman et al. Acceleration to O(N)

2018 Arora et al. Theoretical guarantee for t-

SNE

2018 Verma et al. Generalization of t-SNE to

manifold

Open Question: online t-SNE

1.2 Motivation

Most data-sets exhibit non-linear relationship among features and data points reside in high-

dimensional space. Therefore, we want a low-dimensional embedding of high-dimensional data

that preserves the relationship among different points in the original space in order to visualize

data and explore the inherent structure of data such as clusters. However, many linear dimension-

ality methods such as PCA and classical manifold embedding algorithms such as Isomap fail. Our

technical aim is to embed high-dimensional data to 2-D or 3-D while preserving the relationships

among data points (ie. similar points remain similar; distinct points remain distinct).
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1.3 Stochastic Neighbor Embedding (SNE)

Previous non-linear dimensionality reduction methods have a fixed assignment in low-dimensional

space for a data point in the high-dimensional space, but this often fails to correctly capture a

portion of the ambiguous points that could belong several to local neighborhoods. SNE aims to

best capture neighborhood identity by considering the probability that one point is the neighbor

of all other points. Formally, it defines n × n similarity matrix P in the high dimensional space

whose entries are

pj|i =
exp(−||xi − xj ||2/2τ2i )∑
k 6=i exp(−||xi − xk||2/2τ2i )

where τ2i is the variance for the Gaussian distribution centered around xi. And n × n similarity

matrix Q in the low dimensional space whose entries are

qj|i =
exp(−||yi − yj ||2)∑
k 6=i exp(−||yi − yk||2)

Note that we can interpret pj|i as the probability that xj is a neighbor of xi’s, and P is simply a

probability distribution. Then define the cost function as the Kullback-Leibler divergence over P

and Q

C =
∑
i

KL(Pi||Qi) =
∑
i

∑
j

pj|i log
pj|i

qj|i

From the definition of P , note that SNE focuses on local structure because farther points result in

smaller pij and closer points result in greater pij . The gradient of C is

dC

dyi
= 2

∑
j

(yi − yj)(pj|i − qj|i + pi|j − qi|j)

To choose the appropriate τ2i , SNE performs a binary search for the value of τi that makes the

entropy of the distribution over neighbors equal to log(k), where k is the hyper-parameter perplexity

or the effective number of local neighbors. The perplexity is defined as:

k = 2H(Pi)

where H(Pi) is the Shannon entropy of Pi measured in bits:

H(Pi) = −
∑
j

pj|i log2 pj|i

Therefore, for denser data, greater perplexity k should be chosen, which would result in a smaller

τ2i and neighborhood size. Another consequence is that since the Gaussian kernel is used, the prob-

ability of being a neighbor decreases sharply for any point xj that lies outside of the neighborhood

of a point xi, and the neighborhood is determined exactly by τ2i .
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Figure 1: The result of running the SNE algorithm on 3000
256-dimensional gray-scale images of handwritten digits (not
all points are shown).

As well as SNE preserves local relationships, it suffers from the ”crowding problem”. The area

of the 2D map that is available to accommodate moderately distant data points will not be large

enough compared with the area available to accommodate nearby data points.

Intuitively, there is less space in a lower dimension to accommodate moderately distant data

points originally in higher dimension. See the following example.

Figure 2: An embedding from 2D (left) to 1D (right). Al-
though the distances between the closest points AB and BC
are preserved, the global distance AC has to shrink.

As a result, globally distinct clusters in high dimensional space would get pushed closer to each

other and often times cannot be distinguished from each other in 2D or 3D embedding.
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1.4 t-Distributed Stochastic Neighbor Embedding (t-SNE)

To address the crowding problem and make SNE more robust to outliers, t-SNE was introduced.

Compared to SNE, t-SNE has two main changes: 1) a symmetrized version of the SNE cost function

with simpler gradients 2) a Student-t distribution rather than a Gaussian to compute the similarity

in the low-dimensional space to alleviate the crowding problem.

Notice that in SNE, pij is not necessarily equal to pji, because τij is not necessarily equal to τji.

This makes SNE prone to outliers, because an outlier xi would have very small pji for all other

points, and so its embedded location becomes irrelevant. Thus, in t-SNE pij is defined instead as

pij =
pj|i + pi|j

2n

In this way,
∑

j pij >
1
2n for all data points xi. As a result, each xi makes a significant contribution

to the cost function, and that also gives a simpler gradient, as shown later.

Moreover, t-SNE uses the Student’s t-distribution instead of the Gaussian to define Q

qij =
(1 + ||yi − yj ||2)−1∑
k 6=l(1 + ||yk − yl||2)−1

The cost function of t-SNE is now defined as:

C =
∑
i

KL(Pi||Qi) =
n∑
i=1

n∑
j=1

pij log
pij
qij

The heavy tails of the normalized Student-t kernel allow dissimilar input objects xi and xj to be

modeled by low-dimensional counterparts yi and yj that are far apart because qij is would be large

for two embedded points that are far apart. And since q is what to be learned, the outlier problem

does not exist for low-dimension.

The gradient of the cost function is:

dC

dyi
= 4

n∑
j=1,j 6=i

(pij − qij)(1 + ||yi − yj ||2)−1(yi − yj)

= 4

n∑
j=1,j 6=i

(pij − qij)qijZ(yi − yj)

= 4
(∑
j 6=i

pijqijZ(yi − yj)−
∑
j 6=i

q2ijZ(yi − yj)
)

= 4(Fattraction + Frepulsion)

where Z =
∑n

l,s=1,l 6=s(1 + ||yl − ys||2)−1. The derivation can be found t-SNE paper’s appendix.

Notice that there is an exaggeration parameter α > 1 in the tSNE algorithm, which is used as

a coefficient for pij . This encourages the algorithm to focus on modeling large pij by fairly large
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Algorithm 1 tSNE

Input: Dataset X = {x1, ..., xn} ∈ Rd, perplexity k, exaggeration parameter α, step size h > 0,
number of rounds T ∈ N
Compute {pij : i, j ∈ [n], i 6= j}
Initialize y

(0)
1 , y

(0)
2 , ..., y

(0)
n i.i.d. from the uniform distribution on [−0.01, 0.01]2

for t=0 to T-1 do

Z(t) ←
∑

i,j∈[n],i 6=j

(
1 + ||y(t)i − y

(t)
j ||
)−1

q
(t)
ij ←

(
1+||y(t)i −y

(t)
j ||
)−1

Z(t) , ∀i, j ∈ [n], i 6= j

yt+1
i ← y

(t)
i + h

∑
j∈[n]/{i}

(
αpij − qtij

)
qtijZ

t
(
y
(t)
i − y

(t)
j

)
, ∀i ∈ [n]

end for
Output: 2D embedding Y (T ) =

{
y
(T )
1 , y

(T )
2 , ..., y

(T )
n

}
∈ R2

qij . A natural result is to form tightly separated clusters in the map and thus makes it easier for

the clusters to move around relative to each other in order to find an optimal global organization.

Figure 3: Comparing visualization results on MNIST dataset
between tSNE, Sammon mapping, Isomap, and LLE.

Yet tSNE does have a few caveats and limitations. First, the perplexity parameter needs to be

chosen carefully and might need knowledge about some general knowledge about the data. Varying

perplexity can give drastically different visualizations that show different structures, as the follwoing

figure shows.

Figure 4: Impact of perplexity on resulting embeddings.
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Additionally, coordinates after embedding have no meaning. While tSNE can preserve the

general structure of data in the original space such as clusters, it may distort those structure in the

embedded 2D space. Therefore, the embedded tSNE components carry no inherent meaning and

can merely be used for visualization.

Figure 5: Size of clusters after embedding has no meaning like
how they were in the original space.

Finally, since tSNE focuses on the local structure, the global structure is only sometimes pre-

served. Consequently, interpretation of the relationship between clusters cannot be obtained from

tSNE embedding alone.

Figure 6: tSNE fails to capture the fact that blue and orange
clusters are closer to each other than to the green cluster.

With these three caveats in mind, we conclude the limitations of tSNE.

• tSNE does not work well for general dimensionality problem where the embedded dimension

is greater than 2D or 3D but the meaning of distances between points needs to be preserved

as well as the global structure.

• Curse of dimensionality (tSNE employs Euclidean distances between near neighbors so it

implicitly depends on the local linearity on the manifold)

• O(N2) computational complexity

• Perplexity number, number of iterations, the magnitude of early exaggeration parameter have

to be manually chosen
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1.5 Theoretical Guarantee

Before we present recent theoretical results on tSNE, we need to first formally define visualization.

Definition 1 (Visible Cluster). Let Y be a 2-dimensional embedding of a dataset X with ground-

truth clustering C1, ..., Ck. Given ε ≥ 0, a cluster Cl in X is said to be (1− ε)-visible in Y if there

exist P,Perr ⊆ [n] such that:

(i) |(P\Cl)∪(Cl\P)| ≤ ε · |Cl| i.e. the number of False Positive points and False Negative points

are relatively small compared with the size of the ground-truth cluster.

(ii) for every i, i′ ∈ P and j ∈ [n]\(P∪Perr), ||yi−yi′ || ≤ 1
2 ||yi−yj || i.e. except some mistakenly

embedded points, other clusters are far away from the current clusters.

In such a case, we say that P(1− ε)-visualize Ci in Y.

Definition 2 (Visualization). Let Y be a 2-dimensional embedding of a dataset X with ground-

truth clustering C1, ..., Ck. Given ε ≥ 0, we say that Y is a (1− ε)-visualization of X if there exists

a partition P1, ...,Pk,Perr of [n] such that:

(i) For each i ∈ [k], Pi(1− ε)-visualizes Ci in Y.

(ii) |Perr| ≤ εn i.e. the proportion of mistakenly embedded points must be small.

When ε = 0, we call Y a full visualization of X.

Definition 3 (Well-separated, spherical data). Let X = {x1, ..., xn} ⊂ Rd be clusterable data with

C1, ..., Ck defining the individual clusters such that for each l ∈ [k], |Cl| ≥ 0.1(n/k). We say that

X is γ-spherical and γ-well-separated if for some b1, ..., bk > 0, we have:

(i) γ-Spherical: For any l ∈ [k] and i, j ∈ Cl(i 6= j), we have ||xi−xj ||2 ≥ bl
1+γ , and for i ∈ Cl

we have |{j ∈ Cl\{i} : ||xi − xj ||2 ≤ bl}| ≥ 0.51|Cl|i.e. for any point, points from the same cluster

are not too close with it and at least half of them are not too far away.

(ii) γ-Well-separated: For any l, l′ ∈ [k](l 6= l′), i ∈ Cl and k ∈ C ′l , we have ||xi − xj ||2 ≥
(1 + γ log n) max{bl, bl′}i.e. for any point, points from other clusters are far away.

Given the above definitons, Arora et al. have proven the following results

Theorem 4. Let X = {x1, ..., xn} ⊂ Rd be a γ-spherical and γ-well-separated clusterable data

with C1, ..., Ck defining k individual clusters of size at least 0.1(n/k), where k << n1/5. Choose

τ2i = γ
4 ·minj∈[n]\{i} ||xi − xj ||2(∀i ∈ [n]), step size h = 1, and any early exaggeration coefficient α

satisfying k2
√
n log n << α << n.

Let Y(T ) be the output of t-SNE after T = Θ(n logn
α ) iterations on input X with the above parameters.

Then, with probability at least 0.99 over the choice of the initialization, Y(T ) is a full visualization

of X.

Corollary 5. Let X = {x1, ..., xn} be generated i.i.d. from a mixture of k Gaussians N(µi, I)

whose means µ1, ..., µk satisfy ||µl − µl′ || = Ω̃(d1/4)(d is the dimension of the embedded space) for

any l 6= l′.

Let Y be the output of the t-SNE algorithm with early exaggeration when run on input X with

parameters from Theorem 3.1. Then with high probability over the draw of X and the choice of the

random initialization, Y is a full visualization of X.

The proof of the above results is rather extensive, and the following road map outlines steps of

the whole proof. For detailed proof, see the original paper by Arora et al.
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Figure 7: Proof road map. The numbering of lemmas, corol-
laries, and theorems correspond to that used in the original
paper.
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