Lecture 8 - t-Distributed Stochastic Neighbor Embedding

Instructor: Ziyuan Zhong, Nakul Verma

Scribes: Vincent Liu

Today, we introduce the non-linear dimensionality reduction method t-distributed Stochastic Neighbor Embedding (tSNE), a method widely used in high-dimensional data visualization and exploratory analysis. We will go over how the method was developed over years, its limitations, and briefly the recent theoretical guarantees on the algorithm.

1 Introduction to tSNE

1.1 Timeline

Year	Method	Author	Summary
1901	PCA	Karl Pearson	First dimensionality reduc- tion technique
2000	Isomap	Tenenbaum, de Silva, and Langford	First non-linear dimensional- ity reduction technique
2002	SNE	Hinton and Roweis	Original SNE algorithm
2008	tSNE	Maaten and Hinton	Addressed the crowding issue of SNE, $O\left(N^{2}\right)$
2014	BHt-SNE	Maaten	Using BarnesHut approxima- tion to achieve $O(N$ log $(N))$
2017		Linderman and Steinerberger	First step towards theoretical guarantee for t-SNE
2017	Fit-SNE	Linderman et al.	Acceleration to $O(N)$
2018		Arora et al.	Theoretical guarantee for t- SNE
2018		Verma et al.	Generalization of t-SNE to manifold

Open Question: online t-SNE

1.2 Motivation

Most data-sets exhibit non-linear relationship among features and data points reside in highdimensional space. Therefore, we want a low-dimensional embedding of high-dimensional data that preserves the relationship among different points in the original space in order to visualize data and explore the inherent structure of data such as clusters. However, many linear dimensionality methods such as PCA and classical manifold embedding algorithms such as Isomap fail. Our technical aim is to embed high-dimensional data to 2-D or 3-D while preserving the relationships among data points (ie. similar points remain similar; distinct points remain distinct).

1.3 Stochastic Neighbor Embedding (SNE)

Previous non-linear dimensionality reduction methods have a fixed assignment in low-dimensional space for a data point in the high-dimensional space, but this often fails to correctly capture a portion of the ambiguous points that could belong several to local neighborhoods. SNE aims to best capture neighborhood identity by considering the probability that one point is the neighbor of all other points. Formally, it defines $n \times n$ similarity matrix P in the high dimensional space whose entries are

$$
p_{j \mid i}=\frac{\exp \left(-\left\|x_{i}-x_{j}\right\|^{2} / 2 \tau_{i}^{2}\right)}{\sum_{k \neq i} \exp \left(-\left\|x_{i}-x_{k}\right\|^{2} / 2 \tau_{i}^{2}\right)}
$$

where τ_{i}^{2} is the variance for the Gaussian distribution centered around x_{i}. And $n \times n$ similarity matrix Q in the low dimensional space whose entries are

$$
q_{j \mid i}=\frac{\exp \left(-\left\|y_{i}-y_{j}\right\|^{2}\right)}{\sum_{k \neq i} \exp \left(-\left\|y_{i}-y_{k}\right\|^{2}\right)}
$$

Note that we can interpret $p_{j \mid i}$ as the probability that x_{j} is a neighbor of x_{i} 's, and P is simply a probability distribution. Then define the cost function as the Kullback-Leibler divergence over P and Q

$$
C=\sum_{i} K L\left(P_{i} \| Q_{i}\right)=\sum_{i} \sum_{j} p_{j \mid i} \log \frac{p_{j \mid i}}{q_{j \mid i}}
$$

From the definition of P, note that SNE focuses on local structure because farther points result in smaller $p_{i j}$ and closer points result in greater $p_{i j}$. The gradient of C is

$$
\frac{d C}{d y_{i}}=2 \sum_{j}\left(y_{i}-y_{j}\right)\left(p_{j \mid i}-q_{j \mid i}+p_{i \mid j}-q_{i \mid j}\right)
$$

To choose the appropriate τ_{i}^{2}, SNE performs a binary search for the value of τ_{i} that makes the entropy of the distribution over neighbors equal to $\log (k)$, where k is the hyper-parameter perplexity or the effective number of local neighbors. The perplexity is defined as:

$$
k=2^{H\left(P_{i}\right)}
$$

where $H\left(P_{i}\right)$ is the Shannon entropy of P_{i} measured in bits:

$$
H\left(P_{i}\right)=-\sum_{j} p_{j \mid i} \log _{2} p_{j \mid i}
$$

Therefore, for denser data, greater perplexity k should be chosen, which would result in a smaller τ_{i}^{2} and neighborhood size. Another consequence is that since the Gaussian kernel is used, the probability of being a neighbor decreases sharply for any point x_{j} that lies outside of the neighborhood of a point x_{i}, and the neighborhood is determined exactly by τ_{i}^{2}.

Figure 1: The result of running the SNE algorithm on 3000 256 -dimensional gray-scale images of handwritten digits (not all points are shown).

As well as SNE preserves local relationships, it suffers from the "crowding problem". The area of the 2D map that is available to accommodate moderately distant data points will not be large enough compared with the area available to accommodate nearby data points.

Intuitively, there is less space in a lower dimension to accommodate moderately distant data points originally in higher dimension. See the following example.

Figure 2: An embedding from 2D (left) to 1D (right). Although the distances between the closest points AB and BC are preserved, the global distance AC has to shrink.

As a result, globally distinct clusters in high dimensional space would get pushed closer to each other and often times cannot be distinguished from each other in 2 D or 3 D embedding.

1.4 t-Distributed Stochastic Neighbor Embedding (t-SNE)

To address the crowding problem and make SNE more robust to outliers, t-SNE was introduced. Compared to SNE, t-SNE has two main changes: 1) a symmetrized version of the SNE cost function with simpler gradients 2) a Student-t distribution rather than a Gaussian to compute the similarity in the low-dimensional space to alleviate the crowding problem.

Notice that in SNE, $p_{i j}$ is not necessarily equal to $p_{j i}$, because $\tau_{i j}$ is not necessarily equal to $\tau_{j i}$. This makes SNE prone to outliers, because an outlier x_{i} would have very small $p_{j i}$ for all other points, and so its embedded location becomes irrelevant. Thus, in t-SNE $p_{i j}$ is defined instead as

$$
p_{i j}=\frac{p_{j \mid i}+p_{i \mid j}}{2 n}
$$

In this way, $\sum_{j} p_{i j}>\frac{1}{2 n}$ for all data points x_{i}. As a result, each x_{i} makes a significant contribution to the cost function, and that also gives a simpler gradient, as shown later.

Moreover, t-SNE uses the Student's t-distribution instead of the Gaussian to define Q

$$
q_{i j}=\frac{\left(1+\left\|y_{i}-y_{j}\right\|^{2}\right)^{-1}}{\sum_{k \neq l}\left(1+\left\|y_{k}-y_{l}\right\|^{2}\right)^{-1}}
$$

The cost function of t -SNE is now defined as:

$$
C=\sum_{i} K L\left(P_{i} \| Q_{i}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} p_{i j} \log \frac{p_{i j}}{q_{i j}}
$$

The heavy tails of the normalized Student-t kernel allow dissimilar input objects x_{i} and x_{j} to be modeled by low-dimensional counterparts y_{i} and y_{j} that are far apart because $q_{i j}$ is would be large for two embedded points that are far apart. And since q is what to be learned, the outlier problem does not exist for low-dimension.

The gradient of the cost function is:

$$
\begin{aligned}
\frac{d C}{d y_{i}} & =4 \sum_{j=1, j \neq i}^{n}\left(p_{i j}-q_{i j}\right)\left(1+\left\|y_{i}-y_{j}\right\|^{2}\right)^{-1}\left(y_{i}-y_{j}\right) \\
& =4 \sum_{j=1, j \neq i}^{n}\left(p_{i j}-q_{i j}\right) q_{i j} Z\left(y_{i}-y_{j}\right) \\
& =4\left(\sum_{j \neq i} p_{i j} q_{i j} Z\left(y_{i}-y_{j}\right)-\sum_{j \neq i} q_{i j}^{2} Z\left(y_{i}-y_{j}\right)\right) \\
& =4\left(F_{\text {attraction }}+F_{\text {repulsion }}\right)
\end{aligned}
$$

where $Z=\sum_{l, s=1, l \neq s}^{n}\left(1+\left\|y_{l}-y_{s}\right\|^{2}\right)^{-1}$. The derivation can be found t-SNE paper's appendix.
Notice that there is an exaggeration parameter $\alpha>1$ in the tSNE algorithm, which is used as a coefficient for $p_{i j}$. This encourages the algorithm to focus on modeling large $p_{i j}$ by fairly large

```
Algorithm 1 tSNE
    Input: Dataset \(X=\left\{x_{1}, \ldots, x_{n}\right\} \in \mathbb{R}^{d}\), perplexity \(k\), exaggeration parameter \(\alpha\), step size \(h>0\),
    number of rounds \(T \in \mathbb{N}\)
    Compute \(\left\{p_{i} j: i, j \in[n], i \neq j\right\}\)
    Initialize \(y_{1}^{(0)}, y_{2}^{(0)}, \ldots, y_{n}^{(0)}\) i.i.d. from the uniform distribution on \([-0.01,0.01]^{2}\)
    for \(\mathrm{t}=0\) to \(\mathrm{T}-1\) do
        \(Z^{(t)} \leftarrow \sum_{i, j \in[n], i \neq j}\left(1+\left\|y_{i}^{(t)}-y_{j}^{(t)}\right\|\right)^{-1}\)
        \(q_{i j}^{(t)} \leftarrow \frac{\left(1+\left\|y_{i}^{(t)}-y_{j}^{(t)}\right\|\right)^{-1}}{Z^{(t)}}, \forall i, j \in[n], i \neq j\)
        \(y_{i}^{t+1} \leftarrow y_{i}^{(t)}+h \sum_{j \in[n] /\{i\}}\left(\alpha p_{i j}-q_{i j}^{t}\right) q_{i j}^{t} Z^{t}\left(y_{i}^{(t)}-y_{j}^{(t)}\right), \forall i \in[n]\)
    end for
    Output: 2D embedding \(Y^{(T)}=\left\{y_{1}^{(T)}, y_{2}^{(T)}, \ldots, y_{n}^{(T)}\right\} \in \mathbb{R}^{2}\)
```

$q_{i j}$. A natural result is to form tightly separated clusters in the map and thus makes it easier for the clusters to move around relative to each other in order to find an optimal global organization.

Figure 3: Comparing visualization results on MNIST dataset between tSNE, Sammon mapping, Isomap, and LLE.

Yet tSNE does have a few caveats and limitations. First, the perplexity parameter needs to be chosen carefully and might need knowledge about some general knowledge about the data. Varying perplexity can give drastically different visualizations that show different structures, as the follwoing figure shows.

Figure 4: Impact of perplexity on resulting embeddings.

Additionally, coordinates after embedding have no meaning. While tSNE can preserve the general structure of data in the original space such as clusters, it may distort those structure in the embedded 2D space. Therefore, the embedded tSNE components carry no inherent meaning and can merely be used for visualization.

Figure 5: Size of clusters after embedding has no meaning like how they were in the original space.

Finally, since tSNE focuses on the local structure, the global structure is only sometimes preserved. Consequently, interpretation of the relationship between clusters cannot be obtained from tSNE embedding alone.

Figure 6: tSNE fails to capture the fact that blue and orange clusters are closer to each other than to the green cluster.

With these three caveats in mind, we conclude the limitations of tSNE.

- tSNE does not work well for general dimensionality problem where the embedded dimension is greater than 2 D or 3 D but the meaning of distances between points needs to be preserved as well as the global structure.
- Curse of dimensionality (tSNE employs Euclidean distances between near neighbors so it implicitly depends on the local linearity on the manifold)
- $O\left(N^{2}\right)$ computational complexity
- Perplexity number, number of iterations, the magnitude of early exaggeration parameter have to be manually chosen

1.5 Theoretical Guarantee

Before we present recent theoretical results on tSNE, we need to first formally define visualization.
Definition 1 (Visible Cluster). Let \mathbf{Y} be a 2-dimensional embedding of a dataset \mathbf{X} with groundtruth clustering C_{1}, \ldots, C_{k}. Given $\epsilon \geq 0$, a cluster C_{l} in \mathbf{X} is said to be $(1-\epsilon)$-visible in \mathbf{Y} if there exist $\mathbf{P}, \mathbf{P}_{\mathbf{e r r}} \subseteq[n]$ such that:
(i) $\left|\left(\mathbf{P} \backslash C_{l}\right) \cup\left(C_{l} \backslash \mathbf{P}\right)\right| \leq \epsilon \cdot\left|C_{l}\right|$ i.e. the number of False Positive points and False Negative points are relatively small compared with the size of the ground-truth cluster.
(ii) for every $i, i^{\prime} \in \mathbf{P}$ and $j \in[n] \backslash\left(\mathbf{P} \cup \mathbf{P}_{\text {err }}\right),\left\|y_{i}-y_{i^{\prime}}\right\| \leq \frac{1}{2}\left\|y_{i}-y_{j}\right\|$ i.e. except some mistakenly embedded points, other clusters are far away from the current clusters.
In such a case, we say that $\mathbf{P}(1-\epsilon)$-visualize C_{i} in \mathbf{Y}.
Definition 2 (Visualization). Let \mathbf{Y} be a 2-dimensional embedding of a dataset \mathbf{X} with groundtruth clustering C_{1}, \ldots, C_{k}. Given $\epsilon \geq 0$, we say that \mathbf{Y} is a $(1-\epsilon)$-visualization of \mathbf{X} if there exists a partition $\mathbf{P}_{1}, \ldots, \mathbf{P}_{k}, \mathbf{P}_{\text {err }}$ of $[n]$ such that:
(i) For each $i \in[k], \mathbf{P}_{i}(1-\epsilon)$-visualizes C_{i} in \mathbf{Y}.
(ii) $\left|\mathbf{P}_{\mathbf{e r r}}\right| \leq \epsilon n$ i.e. the proportion of mistakenly embedded points must be small.

When $\epsilon=0$, we call \mathbf{Y} a full visualization of \mathbf{X}.
Definition 3 (Well-separated, spherical data). Let $\mathbf{X}=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{d}$ be clusterable data with C_{1}, \ldots, C_{k} defining the individual clusters such that for each $l \in[k],\left|C_{l}\right| \geq 0.1(n / k)$. We say that \mathbf{X} is γ-spherical and γ-well-separated if for some $b_{1}, \ldots, b_{k}>0$, we have:
(i) γ-Spherical: For any $l \in[k]$ and $i, j \in C_{l}(i \neq j)$, we have $\left\|x_{i}-x_{j}\right\|^{2} \geq \frac{b_{l}}{1+\gamma}$, and for $i \in C_{l}$ we have $\left|\left\{j \in C_{l} \backslash\{i\}:\left\|x_{i}-x_{j}\right\|^{2} \leq b_{l}\right\}\right| \geq 0.51\left|C_{l}\right|$.e. for any point, points from the same cluster are not too close with it and at least half of them are not too far away.
(ii) γ-Well-separated: For any $l, l^{\prime} \in[k]\left(l \neq l^{\prime}\right), i \in C_{l}$ and $k \in C_{l}^{\prime}$, we have $\left\|x_{i}-x_{j}\right\|^{2} \geq$ $(1+\gamma \log n) \max \left\{b_{l}, b_{l^{\prime}}\right\}$ i.e. for any point, points from other clusters are far away.

Given the above definitons, Arora et al. have proven the following results
Theorem 4. Let $\mathbf{X}=\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathbb{R}^{d}$ be a γ-spherical and γ-well-separated clusterable data with C_{1}, \ldots, C_{k} defining k individual clusters of size at least $0.1(n / k)$, where $k \ll n^{1 / 5}$. Choose $\tau_{i}^{2}=\frac{\gamma}{4} \cdot \min _{j \in[n] \backslash i\}}\left\|x_{i}-x_{j}\right\|^{2}(\forall i \in[n])$, step size $h=1$, and any early exaggeration coefficient α satisfying $k^{2} \sqrt{n} \log n \ll \alpha \ll n$.
Let $\mathbf{Y}^{(T)}$ be the output of t-SNE after $T=\Theta\left(\frac{n \log n}{\alpha}\right)$ iterations on input \mathbf{X} with the above parameters. Then, with probability at least 0.99 over the choice of the initialization, $\mathbf{Y}^{(T)}$ is a full visualization of \mathbf{X}.

Corollary 5. Let $\mathbf{X}=\left\{x_{1}, \ldots, x_{n}\right\}$ be generated i.i.d. from a mixture of k Gaussians $\mathbf{N}\left(\mu_{i}, \mathbf{I}\right)$ whose means μ_{1}, \ldots, μ_{k} satisfy $\left\|\mu_{l}-\mu_{l^{\prime}}\right\|=\tilde{\Omega}\left(d^{1 / 4}\right)$ (d is the dimension of the embedded space) for any $l \neq l^{\prime}$.
Let \mathbf{Y} be the output of the t-SNE algorithm with early exaggeration when run on input \mathbf{X} with parameters from Theorem 3.1. Then with high probability over the draw of \mathbf{X} and the choice of the random initialization, \mathbf{Y} is a full visualization of \mathbf{X}.

The proof of the above results is rather extensive, and the following road map outlines steps of the whole proof. For detailed proof, see the original paper by Arora et al.

Figure 7: Proof road map. The numbering of lemmas, corollaries, and theorems correspond to that used in the original paper.

2 References

[1] Pearson K (1901) On lines and planes of closest fit to systems of points in space. Philosophical Magazine 2:559-572.
[2] Tenenbaum JB, De Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319-2323.
[3] Hinton GE and Roweis ST (2002) Stochastic Neighbor Embedding. In Advances in Neural Information Processing Systems. In Advances in Neural Information Processing Systems 15, 833-840.
[4] van der Maaten LJ and Hinton GE (2008) Visualizing data using t-SNE. Journal of Machine Learning Research 9, 24312456.
[5] Linderman GC and Steinerberger S (2017) Clustering with t-SNE, provably. arxiv preprint https://arxiv.org/abs/1706.02582
[6] Arora S, Hu W, Kothari PK (2018) An Analysis of the t-SNE Algorithm for Data Visualization. arxiv preprint https://arxiv.org/abs/1803.01768

